If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+36a+32=0
a = 7; b = 36; c = +32;
Δ = b2-4ac
Δ = 362-4·7·32
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-20}{2*7}=\frac{-56}{14} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+20}{2*7}=\frac{-16}{14} =-1+1/7 $
| 5^x-14=104 | | 4x-16=33 | | 158=-x+279 | | -w+199=254 | | 200-w=104 | | 11x=12+7x | | 5r-5)(8r+3)=180 | | x+33+145=114+x | | x+87+x+5=104 | | 3x-9+138=15x-3 | | 3/5k+8=3 | | 32+20x^2=752 | | 2v^2+4v=-10 | | 2v=7-5v=-17 | | 6n+4n+5-5=90 | | 90+(5a+6)+(7a)=180 | | 90+(5q+5)+(4q-5)=180 | | 77+(6z+1)=180 | | 50+(v-7)=180 | | 90+70+(9r+2)=180 | | (t-4)+(2t+7)+90=180 | | (t-4)+(2t+7)=180 | | 60+(9v+3)=180 | | (64.651+62.7+63.78)+n=270 | | 60+(6t)=180 | | 57+90+(8q+1)=180 | | 59+(8b+7)=180 | | 90+40=x | | x^+12=76 | | 3(y-6)+6y=27 | | 2=6v+5(v+7) | | 15=5w+5(w-5) |